Ten guiding principles for Movement Training in Neurorehabilitation

Author: McLoughlin, J. / Submitted: 18 May 2020.

This article is undergoing peer review.


Introduction

Movement training within neurorehabilitation utilises knowledge from the fields of theoretical motor control and learning, musculoskeletal and neurological rehabilitation. Rehabilitation has embraced the International Classification of Functioning as a useful conceptual framework to identify impairments, activity levels and participation, in addition to facilitators and barriers to the rehabilitation process (Health Organization, 2001). Movement training in neurorehabilitation can aim for restoration, adaptation, maintenance and prevention, themes likely to have relevance across all areas of physical therapy (Lennon et al., 2018). There is however no clear classification system for movement training interventions that could provide an organized way of identifying and labelling the many active ingredients for training (Hart et al., 2014). Treatments can be listed under many labels such as; disciplines (physical therapy, exercise physiology), functions (walking, balance), symptoms (pain, tremor), body parts (knee, trunk), impairments (strengthening, cognitive training), sensory systems (vestibular, proprioceptive), techniques (mobilization, facilitation), philosophies (Tai Chi, Yoga), researched protocols (Constraint Induced Movement Therapy), equipment (Treadmill training, Robotics), orthosis/prosthesis (Splints, Braces), actions (isometric, ballistic) approaches (Action Observation, Task Specific Practice) and original concept inventors (Brunnstrom, Bobath). In the current climate of evidenced based learning, inconsistent labels such as these make information dissemination incredibly challenging. Clinicians rarely use isolated interventions (Hayward et al., 2014; Kleynen et al., 2017), which creates an immediate divide between clinical practice and many singular or simple research design protocols. A common language of movement training principles could help teach clinical reasoning and guide research toward specific problems encountered in practice (Esculier et al., 2018).

While ‘neuroplasticity’ is an important physiological process for motor learning, the term itself is often exploited as a popular buzzword that lacks specific meaning to guide clinical practice. Neuroplasticity refers to the ability of the central nervous system (CNS) to make structural and functional changes in response to internal and external stimuli (Cramer et al., 2011). Clinicians can learn basic principles of plasticity such as specificity, intensity, time and age in the hope that it can inform clinical practice to improve rehabilitation interventions (Kleim & Jones, 2008). These principles are likely to be important yet remain limited in their ability to guide specific movement training at an operational level.

Theories of human motor control should also inform clinical practice. The Generalized Motor Program theory proposed by Schmidt (Schmidt, 1975) suggests the CNS stores generalized programs used for certain types of actions. The Systems model theory theorizes that movement evolves from an interaction with multiple systems in order to meet our functional goals and provides a theory on how movement synergies can influence control over the Degrees of Freedom ‘problem’ originally described by Bernstein (Bernshteĭn, 1967). More recent follow up work on the uncontrolled manifold hypothesis has emphasized the ‘abundance’ of solutions to a movement, as these provide a rich sensory learning experience that can improve adaptability – perhaps a key part in our evolution (Latash, 2018). Future physical rehabilitation research is already gaining insight from these ideas (Vaz et al., 2019). Computational theory highlights the feedforward predictive abilities of the CNS (D. M. Wolpert et al., 2011), while the Dynamic Systems theory proposes that movement constantly adapts to both individual and environmental constraints (Corbetta & Vereijken, 1999; Kamm et al., 1990). These are just some theories that provide valuable information to include within training principles.

Rehabilitation technology could also benefit from a more structured approach. Current research around virtual reality has been described as the ‘wild west’ with a lack of clear guidelines and a temptation to focus on the technology itself rather than the theories behind its use for training (Birckhead et al., 2019). Robotic devices have also been recognized for their potential to drive recovery yet need to consider relevant components of neuroplasticity and learning for future successful evaluation and design (Brackenridge et al., 2016). Current devices can be reviewed in terms of what training principles they might contribute towards enhancing outcomes, which could then inform improved updates and designs in the future.

Patients themselves also need the opportunity to become active learners in the rehabilitation process where they can understand and identify important components for training. Clear and simple training principles without complicated professional jargon, could help engage patients in the design of their own physical rehabilitation over the longer term (McKenna et al., 2015).

The importance of a common language to describe the movement system within physical therapy has been recognized as a priority (Association & Others, 2015). This paper briefly summarises ten ‘Movement Training Principles’ (MTPs) that should be considered when planning physical therapy (Figure 1). This can be used across all health disciplines involved in movement training, including Physiotherapists, Exercise Physiologists, Occupational Therapists and Personal Trainers. These components are likely to be relevant for movement training for many clinical populations, however this paper will focus on neurorehabilitation.

The Movement Training Principles


Figure 1. Ten guiding principles for Movement Training

1. Actual and Predicted Bodily State

Multiple, congruent sensory inputs from vision, proprioception, vestibular, auditory and even arterial baroreceptors (Mittelstaedt, 1996; Ogoh et al., 2018) give perceptive information about body location. It has been stated that we must learn to predict the sensory consequences of movement, before we can control our movements (D. M. Wolpert et al., 2011) possibly through a process of Bayesian inference – a statistical model of probability which updates as more sensory information becomes available (Samad et al., 2015; Daniel M. Wolpert, 2014). Feedforward prediction leads to sensory attenuation of self-initiated movements (Blakemore et al., 1998) and explains why we cannot tickle ourselves! These predictive abilities assist in developing a sense of body ownership, self-identity (Dogge et al., 2019), and a sense of agency, which are important parts of the motor learning process (Sato & Yasuda, 2005). For example, Functional Neurological Disorders show reduced sensory attenuation, which may help explain dissociative symptoms and an unwanted shift in movement behaviour (Pareés et al., 2014). People with schizophrenia can demonstrate changes in sensory predictive abilities that may well contribute to conflicts in body ownership (Frith et al., 2000). Parkinson’s Disease (PD) patients demonstrate lower sensory attenuation with reduced intake of dopaminergic medication (Wolpe et al., 2017). Whiplash and concussion patients show deficits in cervical joint position error of the head in space (Cheever et al., 2016; Chen & Treleaven, 2013; Treleaven et al., 2006) which may drive ongoing symptoms, while many stroke patients with ‘Pusher Syndrome’ show altered perceptions of verticality and/or graviception that may contribute to the action of pushing toward the hemiplegic side (Karnath, 2007). Spatial cognition helps determine the locations of body parts in relation to the surrounding environment with known deficits in physiological aging (Gazova et al., 2012), stroke (Lunven & Bartolomeo, 2017) and neurodegenerative conditions (Possin, 2010). Spatial awareness of depth, vertical perception, surrounding boundaries and landmarks could be an important consideration for movement training. Extra sensory inputs, spatial orientation and interaction with the environment might assist in priming motor activity (Stoykov & Madhavan, 2015).

2. Feedback

External feedback can provide information about the ultimate success or outcome of the movement, which is termed Knowledge of Results (KoR). External sensory feedback is often termed augmented feedback, and can be used as extra information used to coach movement and includes verbal or non-verbal instruction, manual facilitation to block or guide movements (Normann, 2018), visual feedback via laser pointers or mirrors to provide information about speed, size and direction of movement. Electro Myogenic biofeedback can provide auditory or visual feedback about muscle activity during movement. Virtual reality can also provide extra information about movement (Ferreira dos Santos et al., 2016). Internal sensory feedback about movement kinematics and kinetics, can guide movement quality control and provides a Knowledge of Performance (KoP). Feedback can be provided constantly, intermittently or randomly with the aim of enhancing learning. Feedback can be provided ‘live’ during movement or can be used later to review movement performance – such as via video review. Feedback can be gradually reduced as motor control improves as too much feedback may be considered if the learner is becoming reliant on this extra information to move effectively, in what has been termed the ‘guidance effect’ (Salmoni et al., 1984). However this effect may not apply to all situations, with ongoing feedback learning mechanisms shown to be beneficial in some situations (Buchanan & Wang, 2012). In neurorehabilitation it may be important to consider different feedback learning strategies to maintain function and quality of life in some neurological conditions (Donchin & Timmann, 2019).

3. Error-based Learning

If the actual sensations from a movement differ from what was anticipated by feedforward prediction, it is referred to as a sensory prediction error (SPE). These can be errors in timing, direction or force. As control improves, SPEs reduce with practice through a process of unconscious error-based learning, which is likely to be important for skill acquisition. An example can be reducing the SPE of retinal slip with head movements following vestibular gaze stability exercises (Migliaccio & Schubert, 2019). Error-based learning with reaching arm movements may be motion referenced, by comparing SPEs with actual motion states (Gonzalez Castro et al., 2011) or perhaps more importantly, SPEs are compared with the cognitive plans and intentions linked to the reaching movement (Day et al., 2016). Error-based learning such as split-belt treadmill adaptation can even occur in combination with other simultaneous conscious feedback learning strategies (Statton et al., 2016). Clinicians can consider both implicit and explicit motor learning strategies with training (Kleynen et al., 2015). This concept of dual-learning has exciting implications for gait retraining strategies in populations such as stroke (Cherry-Allen et al., 2018).

4. Reward-based Learning

Reward links closely to the idea of salience – what is important to the individual? The resulting behavioural reactions might positively reinforce the selection of a new movement and improve skill retention (Galea et al., 2015). New sensations might drive a form of ‘playful exploration’ to seek out some variability in the hope of reward (Pekny et al., 2015). It is difficult to be sure what an individual person might interpret as rewarding (Schultz, 2015), but incorporating rewards into movement training is likely to be important for movement selection. Interactive video ‘gamification’, has been shown to be feasible within neurorehabilitation (van den Berg et al., 2016) and could assist in driving motivational behaviour, increasing practice dose and physical activity for some (Hassett et al., 2016, 2020; Krakauer & Cortés, 2018). Future technology could possibly make obtaining reward more achievable such as using virtual reality to provide an illusion of amplified arm movements in order to achieve reward more easily (Ballester et al., 2016). Internal rewards such as stability and perceived safety may also attract movement habits such as slow, asymmetrical gait patterns, despite making progress with speed and symmetry in therapy. If training is to provide alternative movement selections and carry-over into real life, both external and internal rewards will need to add value for each individual patient (Roemmich & Bastian, 2018).

5. Cognitive Selecting and Planning

Movements include many sequential parts that are grouped together in a process called ‘motor chunking’ (Diedrichsen & Kornysheva, 2015). These motor chunks are probably distributed throughout the cortex as motor plans and retrieved via memory processes involving basal ganglia and cerebellar networks. Freezing of gait in Parkinson’s Disease may indicate problems accessing motor plans (Heremans et al., 2013). Task specific dystonia may also demonstrate a corruption in selecting movement plans for specific tasks (Sadnicka et al., 2017). Apraxia may also result from selecting and planning deficits. Innovative visuo-motor training to improve movement ideation and planning such as Action Observation may have potential for training (Pazzaglia & Galli, 2019) as well as motor imagery (Eaves et al., 2016; O’Shea & Moran, 2017; Silva et al., 2018), mirror therapy (Thieme et al., 2019) and movement with music (Srinivasan & Bhat, 2013; Zhang et al., 2017).

Metacognitive processes involved in evaluating feedback and the level of thinking and self-awareness required to make decisions and choices about movement are important. Reflecting on real world hemiplegic arm use with the transfer package in Constraint Induced Movement Therapy might be an example of how important this can be (Taub et al., 2013). Training of visuospatial tasks, attentional set-shifting and working memory has shown promise with reducing freezing of gait in Parkinson’s Disease (Walton et al., 2018), while training metacognitive awareness might also assist with transference of skills across tasks in stroke (McEwen et al., 2014). Opportunities to make choices about the type of practice might also further enhance the motor learning process (Lewthwaite et al., 2015).

6. Practice and Variability

‘Dose’ of practice has been gaining increasing attention, particular in populations such as stroke where interventions with higher doses of practice have shown promise in animal studies (Birkenmeier et al., 2010) and early human trials (Hsu et al., 2010; Lang et al., 2015; Lohse Keith R. et al., 2014; Moore Jennifer L. et al., 2010). Dose in this context refers to the number of movement repetitions, or time spent actively engaged in practice. For some movements, very high movement repetition numbers will be needed to drive neuroplasticity and functional change, however the benefits of high repetitions for stroke upper limb rehabilitation still reach a plateau in terms of functional effectiveness (Lang et al., 2016). This has prompted some reflection on how to further intensify interventions in other innovative ways (Bernhardt et al., 2019; Winstein, 2018; Winstein & Varghese, 2018). For many neurological patients, high repetitions are not possible due to weakness, fatigue, reduced attention span or musculoskeletal load restrictions (see physical capacity), so alternative ways to define and engage in practice could be explored.

Variability is known to influence motor learning (Dhawale et al., 2017) and was termed – ‘repetition without repetition’ by Bernstein (Ito, 2015). It highlights the importance of building multiple movement solutions to deal with unforeseen changes in internal or external conditions. Early variability in training can be a necessary way to map the possibilities of movement for a task (Harbourne & Stergiou, 2009). Random practice might take longer for skill acquisition when compared to blocked practice, but retention of a skill may be superior (Shea & Morgan, 1979). Random practice (Lee & Magill, 1983; Merbah & Meulemans, 2011) and distributed practice (spaced practice) might also enhance the learning process (Gerbier & Toppino, 2015). Rest intervals can also allow for recovery, and sleep has even been shown to help ‘off-line’ motor skill learning in stroke (Gudberg & Johansen-Berg, 2015; Siengsukon & Boyd, 2009). As movement becomes more successful the expert learner may seek further variability to build a higher level of skill (Harbourne & Stergiou, 2009) for an optimal ‘challenge point’ for learning (Guadagnoli & Lee, 2004). Movement training might also allow learners to choose for themselves how they vary their own practice (Wu & Magill, 2011).

7. Biomechanics

Movement training can aim to either increase or decrease the movement degrees of freedom in order to improve performance. For example, an ankle foot orthosis can provide an external constraint to provide stability at the ankle, knee and might help with toe clearance in gait (Tyson et al., 2013). For some suitable candidates, carbon fibre AFOs can provide propulsion and improved energy efficiency (Aboutorabi et al., 2017) and ankle dorsiflexion assist devices can mitigate against fatigue effects on strength and balance in people with Multiple Sclerosis (McLoughlin et al., 2014). For optimal functional movement biomechanical trade-offs around stability versus mobility will need to be considered with the prescription of all these devices ((Cattaneo et al., 2002; Meyns et al., 2020).

Internal constraints such as muscle and joint contracture, viscoelastic stiffness of muscles and velocity dependent hyperexcitability in spasticity can also alter biomechanics (Glazier & Davids, 2009). Training may consider increasing active range (if possible) and exploring optimal ways of controlling any new range to adapt and improve performance.

Robotic exoskeletons can provide biomechanical support and assistance to enable function and increase practice. Features can include impedance control of the device as it interacts with the environment, and adaptive control, which adjusts to a person’s needs (Krebs, 2018). Potential advantages in enabling movement are anticipated in terms of reducing disability, but important questions around the design requirements to enhance motor learning still need to be answered (Rodgers et al., 2019; Tejima, 2001). Even so, novel robotic technology if paired with virtual reality may have enormous potential to provide a variable and enriched motor learning experience (Krakauer & Cortés, 2018).

8. Physical Capacity

Strength training can be undertaken for specific functional actions that may involve combinations of concentric, eccentric, isometric or ballistic contractions. The functional need for power and/or endurance will influence prescription and progression of load, repetitions and perceived intensity. Common barriers that require consideration with strengthening include; engaging very weak muscles, musculoskeletal injury, motor and perceived fatigue, and sensitivities such as spasms or dystonia (McCambridge et al., 2019). Progressive resistive training is gaining clear evidence on improving strength for Multiple Sclerosis (Kjølhede et al., 2012), stroke (de Sousa et al., 2018; Flansbjer et al., 2012; Harris & Eng, 2010; Mehta et al., 2012; Morris et al., 2004), Parkinson’s Disease (de Farias et al., 2020) and Cerebral Palsy (Ross et al., 2016; veloso Fernandes et al., 2017). Resistance training can even have a positive effect on brain volume and cognitive functioning (Herold et al., 2019).

Load on musculoskeletal structures is also very relevant. The amount of practice may need slow incremental progression to minimize risk of injury and subsequent setbacks in rehabilitation. Tendinopathy, osteoporosis and osteoarthritis exercises all need individualized management of load, in addition to those recovering from ligament sprains, stress fractures and muscle strains (Drew & Finch, 2016).

Cardiovascular fitness within a movement training program can improve function and quality of life (Ellis & Motl, 2013; Stoller et al., 2012). There is a long list of other health benefits of fitness that cannot be ignored, particularly in neurological populations where activity levels are often very low (Rimmer & Lai, 2015). Brain health with aerobic exercise is also important and might be used to prime neuroplasticity for learning (Mang et al., 2013, 2014; Moriarty et al., 2019; Schwenk et al., 2014) and over time, could be neuroprotective for some degenerative conditions such as Parkinson’s Disease (Schenkman et al., 2017; Zigmond & Smeyne, 2014).

9. Attention

Attentional focus refers to how the person attends to selective sensory stimulus to help initiate and regulate movement performance. If attention is drawn to the movement quality of body parts and characteristic techniques or bodily sensations – this is termed ‘internal focus’. This might be useful to initiate and recruit movement, but can be detrimental if it over-complicates movement planning by deviating away from the automatic selection of desired motor plans (Lohse et al., 2014; Song, 2019), possibly worsening outcomes in Functional Neurological Disorders (Espay et al., 2018), dystonia (Sadnicka et al., 2017) and might even explain ‘choking’ under pressure in sport (Cappuccio et al., 2018). Internal focus might also increase pain perception via pain hypervigilance (Vossen et al., 2018).

An ‘external focus’ is more commonly used in movement training and directs the learner to information about movement effects on the outside environment. There is an accumulation of evidence that supports an external focus of attention in preference to an internal focus for motor learning (Wulf, 2013). Multiple types of external sensory attentional cues can help facilitate movement in Parkinson’s Disease (Cassimatis et al., 2016). In stroke however, the relative roles of internal versus external focus are less clear (Kal et al., 2018). In neurorehabilitation clinicians may well need to be prepared to use different types of attentional focus to improve motor learning.

Dual tasking using another simultaneous movement or cognitive task might increase movement automaticity by forcing the brain to continue to execute movements while attentional demands are focused elsewhere. This may have advantages for simulating real life scenarios, but care must be taken if performance decays enough to reduce motivation or lead to falls/injury (Heinzel et al., 2016).

10. Beliefs and Self-efficacy

Confidence in one’s ability and the belief that training will help improve performance and function is possibly the most important MTP. Major barriers that prevent people engaging in exercise include ‘low expectation’ from exercise and ‘fear of falling’ (Ellis et al., 2011). Beliefs drive behaviour both in and outside the training environment so neurorehabilitation may need to consider strategies around motivation and behaviour change (Ellis & Motl, 2013; Michie et al., 2011). Training programs might utilize measures of self-efficacy as these have been shown to be better predictors of mental health, disability and quality of life in neurological conditions (Shulman et al., 2019). Fear of movement in pain states and beliefs around certain ‘safe’ or ‘correct’ postures result in kinesiophobia (Vaegter et al., 2018), which limits opportunity to train and explore all movement options. In chronic pain, a vicious cycle of limited motor control can persist, and future movement training interventions in chronic pain may need to target many MTPs. A movement training program should consider building choice, autonomy and confidence in an individual to create what has been termed a ‘virtuous cycle’ of positive learning (Wulf & Lewthwaite, 2016).

Discussion

The MTPs categorise ten interrelated factors that impact physical therapy that can be targeted in training programs using various possible strategies (Table 1). The MTPs are intended to assist neurorehabilitation practice and research by;

  • Encouraging a common terminology used to educate and empower patients and can be used across all health professions and students involved in movement training.
  • Providing principles that can be updated as knowledge grows.
  • Identify training components affected in individual patients to inform clinical decision making.
  • Use principles to evaluate and design innovative rehabilitation treatments (from past, present and future practice), including rehabilitation technology.

The MTPs can stimulate discussion about how and when principles can be targeted with interventions. Debates regarding interventions based on MTPs, rather than philosophical or historical approaches could provide more constructive conversations about ways to improve outcomes in rehabilitation. Some interventions or protocols might be stronger in some principles more than others. If principles are then identified as useful additions, these might be added into the program, included in additional treatments, or planned for a later time during the rehabilitation journey. Experienced physiotherapists tend to use a diverse selection of treatment options in neurorehabilitation (Kleynen et al., 2017) but have difficulty articulating the clinical reasoning process (Hart et al., 2014; Vaughan-Graham et al., 2019). The MTPs may help guide this process and future work in the implementation of these principles in clinical teaching and practice is warranted. Every principle included in this paper is interrelated with all the others, with no hierarchical level of importance. The MTPs should only provide options for consideration and are therefore not prescriptive. This more simplified strategy will help train new professionals by providing useful training principles to consider, while more experienced clinicians can use the MTPs to articulate and justify their rehabilitation plans, especially when an intervention combines multiple training principles.

As neuroscientific and clinical evidence regarding specific clinical populations continues to grow, the relevance of the MTPs for each of these populations will hopefully become more clear. Detailed justifications and descriptions of training principles within interventions could improve research methodology reporting (Hoffmann et al., 2014) and assist with the design of future rehabilitation technology (Brackenridge et al., 2016). Researchers in stroke rehabilitation have recently recognised the importance of identifying the interaction of many training components that are likely to be important in driving recovery (Hayward et al., 2014). The need to identify more usable ingredients to help bridge the gap between motor learning principles and clinical practice in stroke has recently been highlighted (Maier et al., 2019). In clinical teaching, the MTPs can discourage the use of vague or non-specific terminology. For example, recent discussions around the importance of ‘dose’ and ‘intensity’ in promoting neuroplasticity, could refer to more specific principles about practice of repetitions, amount and type of variability, type of attentional focus and specific active learning strategies used in a particular intervention. The next step is to investigate the potential use of MTPs in assisting clinical reasoning and design thinking in various clinical settings with different neurological populations.

The MTPs also have relevance for movement training in musculoskeletal and sports rehabilitation. It is hoped a common language will assist with much needed collaborations between the fields of neurological, vestibular and musculoskeletal physical therapy (Snodgrass et al., 2014), injury prevention (Low, 2018) and sporting performance (Glazier, 2017). Exchanging ideas becomes much easier when we are speaking the same language!

PrincipleDefinitionExample
1. Actual & Predicted Bodily StateAwareness of intrinsic body positions and the surrounding space. Multiple incoming sensations during movement become predictable and reliable, with a sense of ownership and agency.Provide congruent sensory stimulation to increase proprioceptive awareness through load bearing, tactile stimulation, mobilisation, visual orientation, active movements and exploration. Sensory priming as a warm-up exercise. Orientation or ‘tuning in’ to body parts and the surrounding space.
2. FeedbackKnowledge of Performance is information about movement execution via verbal feedback and non-verbal sensory cues from tactile, proprioceptive, auditory and vision.

Knowledge of Results provides explicit information from external verbal, non-verbal, visual coaching about the outcomes of the movement, or goal achievement.
Tactile feedback, visual feedback via mirror or laser pointers, Electromyography auditory/visual feedback, dynamic/textured insoles, taping. Feedback can also be reduced/removed such as closing eyes. Explicit information about technique.

Task completed successfully? The timing of completion, accuracy of movement, number of mistakes, number successfully completed.

Feedback can be provided continuously, intermittently and gradually removed as skill improves. Is the person becoming over-reliant on feedback such that it is limiting progress?
3. Error-based LearningImplicit information comparing predicted versus actual movement sensations produce sensory prediction errors during practice. These errors reduce as skill acquisition improves.Sensory information about movement precision in terms of timing, direction or force. Consider contrasting sensations that give information about accuracy such as visual targets and proprioceptive or visual boundaries with movement.
4. Reward-based LearningA form of achievement or reward as a result of the movement.Consider novel sensations, feeling secure and safe, emotional gains, ‘showing off’, success in reaching a goal or pleasurable rewards on completion. Consider ways to incentivize training through choosing tasks that are achievable, using coercion, prizes and gamification.
5. Cognitive Selecting & PlanningThe process of consciously thinking, planning and choosing from a variety of movement options in order to complete the required outcome.Cognitive training to monitor and adapt via conscious choice and planning. This includes spatial cognition, navigation, pre-planning/ideation, metacognitive awareness and executive functions.

Consider video reviews to analyse movement, action observation, mental practice and motor imagery.

Self monitoring real world arm use, such as the transfer package in Constraint Induced Movement Therapy.
6. Practice & VariabilityPractice can be determined using a select number of repetitions of a movement or time spent actively practicing.

Variations can include subtle changes in speed, timing and direction in movement performance and rest intervals between repetitions or sessions.
Repetitions, time engaged in task, rest intervals individually prescribed.

Consider variations in speed, distance, power, direction and sequence of movements. Variation can be added via coaching instruction, setting the nominal difficulty of the task or adding external variables such as unexpected perturbations.
7. BiomechanicsDoes the training provide opportunity to enable or constrain movement kinematics or kinetics in order to enhance activity and the learning experience?Splints, braces can limit ROM for stability to enable functional movement. Mobilisation with movement and active movement to increase functional ROM. Functional Electrical Stimulation may increase active ROM with orthotic benefit to increase activity. Propulsive energy in carbon-fibre AFOs to improve energy efficiency with walking.

Constraints to block movement and force other strategies e.g. Trunk restraint with reaching, mit/glove in Constraint Induced Movement Therapy.

Manual facilitation and guidance, buoyancy in hydrotherapy or robotic exoskeleton to provide active assistance against gravity for weak muscles to allow more movement practice.
8. Physical CapacityTraining protocols for:

* Muscular strength, power, endurance and/or 
*Cardiovascular fitness
*Load management
* Brain health and neuroprotection
Resistive training, increase/decrease loads, repetitions, exertion (repetitions in reserve), power outputs, rest times, set numbers, per day/week, type of muscle action (concentric, eccentric, isometric, ballistic).

Monitor load on tendons, muscles, ligament, bones and joints with injury or pathology.

Aerobic exercise, time and training distance. High/low or intermittent levels of intensity, actual (Heart Rate) or perceived exertion.
9. AttentionInternal focus on the body parts, sensations and actual technique of movement performance.

External focus on the result of the movement or other related factors. Cues to help the initiation, sequence or timing of a movement.

Dual tasking using additional simultaneous tasks while still performing the movement.
Internal focus on body part, tactile sensations of friction, pressure, performance technique. Tactile cues to bring attention to specific body part(s).

External focus on spatial direction of targets, timing of movement. Visual cues such as lines on the floor, targets on the wall. Verbal cues, tactile stimulation to help initiate movement or bring attention back to task. Auditory cues such as metronome/music to aid rhythmic patterns.

Add an additional cognitive task – talking, cognitive challenge, or additional functional movements – carrying a drink or interacting with a smartphone.
10. Beliefs & Self-efficacyDoes the person believe that the training is useful and beneficial?

Do they believe the training/movement is in some way harmful or do they have concerns or reservations?

Is there potential to become more confident in the movement?

Does the training encourage confidence to self-monitor, initiate and continue their own training?
Screen for preconceived negative beliefs about specific movements, impairments and treatments. Listen to the person’s opinion about the training ideas before, during and after sessions.

Provide education in the context of an individualized rehabilitation plan and invite them and/or their carers to help in the design.

Measure self-efficacy before, during and after a program. Discuss and map long-term strategies from the outset and encourage positive behaviour modification.
Table 1: A summary of the Movement Training Principles with possible examples for each.

References

Aboutorabi, A., Arazpour, M., Ahmadi Bani, M., Saeedi, H., & Head, J. S. (2017). Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review. Annals of Physical and Rehabilitation Medicine, 60(6), 393–402. https://doi.org/10.1016/j.rehab.2017.05.004

Association, A. P. T., & Others. (2015). Physical therapist practice and the movement system. An American Physical Therapy Association White Paper.

Ballester, B. R., Maier, M., San Segundo Mozo, R. M., Castañeda, V., Duff, A., & M J Verschure, P. F. (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. Journal of Neuroengineering and Rehabilitation, 13(1), 74. https://doi.org/10.1186/s12984-016-0178-x

Bernhardt, J., Hayward, K. S., Dancause, N., Lannin, N. A., Ward, N. S., Nudo, R. J., Farrin, A., Churilov, L., Boyd, L. A., Jones, T. A., Carmichael, S. T., Corbett, D., & Cramer, S. C. (2019). A Stroke Recovery Trial Development Framework: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 33(11), 959–969. https://doi.org/10.1177/1545968319888642

Bernshteĭn, N. A. (1967). The co-ordination and regulation of movements. Pergamon Press. https://play.google.com/store/books/details?id=F9dqAAAAMAAJ

Birckhead, B., Khalil, C., Liu, X., Conovitz, S., Rizzo, A., Danovitch, I., Bullock, K., & Spiegel, B. (2019). Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Mental Health, 6(1), e11973. https://doi.org/10.2196/11973

Birkenmeier, R. L., Prager, E. M., & Lang, C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabilitation and Neural Repair, 24(7), 620–635. https://doi.org/10.1177/1545968310361957

Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635–640. https://doi.org/10.1038/2870

Brackenridge, J., V. Bradnam, L., Lennon, S., J. Costi, J., & A. Hobbs, D. (2016). A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke. Neuroscience, 4(1), 25–42. https://www.ingentaconnect.com/content/ben/nbe/2016/00000004/00000001/art00006

Buchanan, J. J., & Wang, C. (2012). Overcoming the guidance effect in motor skill learning: feedback all the time can be beneficial. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 219(2), 305–320. https://doi.org/10.1007/s00221-012-3092-x

Cappuccio, M. L., Gray, R., Hill, D. M., Mesagno, C., & Carr, T. H. (2018). 5 The Many Threats of Self-Consciousness: Embodied Approaches to Choking under Pressure in Sensorimotor Skills. Handbook of Embodied Cognition and Sport Psychology, 101.

Cassimatis, C., Liu, K. P. Y., Fahey, P., & Bissett, M. (2016). The effectiveness of external sensory cues in improving functional performance in individuals with Parkinson’s disease: a systematic review with meta-analysis. International Journal of Rehabilitation Research. Internationale Zeitschrift Fur Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation, 39(3), 211–218. https://journals.lww.com/intjrehabilres/fulltext/2016/09000/The_effectiveness_of_external_sensory_cues_in.3.aspx

Cattaneo, D., Marazzini, F., Crippa, A., & Cardini, R. (2002). Do static or dynamic AFOs improve balance? Clinical Rehabilitation, 16, 894–899. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12501952

Cheever, K., Kawata, K., Tierney, R., & Galgon, A. (2016). Cervical Injury Assessments for Concussion Evaluation: A Review. Journal of Athletic Training, 51(12), 1037–1044. https://doi.org/10.4085/1062-6050-51.12.15

Chen, X., & Treleaven, J. (2013). The effect of neck torsion on joint position error in subjects with chronic neck pain. Manual Therapy, 18(6), 562–567. https://doi.org/10.1016/j.math.2013.05.015

Cherry-Allen, K. M., Statton, M. A., Celnik, P. A., & Bastian, A. J. (2018). A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabilitation and Neural Repair, 32(9), 810–820. https://doi.org/10.1177/1545968318792623

Corbetta, D., & Vereijken, B. (1999). Understanding development and learning of motor coordination in sport: The contribution of dynamic systems theory. International Journal of Sport Psychology. https://psycnet.apa.org/record/2000-08079-005

Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., Rumsey, J. M., Hicks, R., Cameron, J., & Chen, D. (2011). Harnessing neuroplasticity for clinical applications. Brain: A Journal of Neurology, 134, 1591–1609.

Day, K. A., Roemmich, R. T., Taylor, J. A., & Bastian, A. J. (2016). Visuomotor Learning Generalizes Around the Intended Movement. eNeuro, 3(2). https://doi.org/10.1523/ENEURO.0005-16.2016

de Farias, G. L., Fischer, B. L., Oliveira, J. A., Abreu, S. K., Vidal, S. E., Mota, M. R., Lima, R. M., & de Oliveira, R. J. (2020). Progressive Resistance Training Improves Bradykinesia, Motor Symptoms and Functional Performance in Patients with Parkinson’s Disease. Clinical Interventions in Aging, 15, 87–95. https://www.researchgate.net/profile/Sandro_Nobre/publication/338755030_Progressive_Resistance_Training_Improves_Bradykinesia_Motor_Symptoms_and_Functional_Performance_in_Patients_with_Parkinson’s_Disease/links/5e2b6c074585150ee7809424/Progressive-Resistance-Training-Improves-Bradykinesia-Motor-Symptoms-and-Functional-Performance-in-Patients-with-Parkinsons-Disease.pdf

de Sousa, D. G., Harvey, L. A., Dorsch, S., & Glinsky, J. V. (2018). Interventions involving repetitive practice improve strength after stroke: a systematic review. Journal of Physiotherapy, 64(4), 210–221. https://doi.org/10.1016/j.jphys.2018.08.004

Dhawale, A. K., Smith, M. A., & Ölveczky, B. P. (2017). The Role of Variability in Motor Learning. Annual Review of Neuroscience, 40, 479–498. https://doi.org/10.1146/annurev-neuro-072116-031548

Diedrichsen, J., & Kornysheva, K. (2015). Motor skill learning between selection and execution. Trends in Cognitive Sciences, 19(4), 227–233. https://doi.org/10.1016/j.tics.2015.02.003

Dogge, M., Hofman, D., Custers, R., & Aarts, H. (2019). Exploring the role of motor and non-motor predictive mechanisms in sensory attenuation: Perceptual and neurophysiological findings. Neuropsychologia, 124, 216–225. https://doi.org/10.1016/j.neuropsychologia.2018.12.007

Donchin, O., & Timmann, D. (2019). How to help cerebellar patients make the most of their remaining learning capacities. Brain: A Journal of Neurology, 142(3), 492–495. https://doi.org/10.1093/brain/awz020

Drew, M. K., & Finch, C. F. (2016). The Relationship Between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. Sports Medicine , 46(6), 861–883. https://doi.org/10.1007/s40279-015-0459-8

Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2016). Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities. Frontiers in Neuroscience, 10, 514. https://doi.org/10.3389/fnins.2016.00514

Ellis, T., Cavanaugh, J. T., Earhart, G. M., Ford, M. P., Foreman, K. B., Fredman, L., Boudreau, J. K., & Dibble, L. E. (2011). Factors associated with exercise behavior in people with Parkinson disease. Physical Therapy, 91(12), 1838–1848. https://doi.org/10.2522/ptj.20100390

Ellis, T., & Motl, R. W. (2013). Physical activity behavior change in persons with neurologic disorders: overview and examples from Parkinson disease and multiple sclerosis. Journal of Neurologic Physical Therapy: JNPT, 37(2), 85–90. https://doi.org/10.1097/NPT.0b013e31829157c0

Esculier, J. F., Barton, C., Whiteley, R., & Napier, C. (2018). Involving clinicians in sports medicine and physiotherapy research:’design thinking’to help bridge gaps between practice and evidence. https://bjsm-bmj-com.ezproxy.flinders.edu.au/content/52/24/1550.abstract

Espay, A. J., Aybek, S., Carson, A., Edwards, M. J., Goldstein, L. H., Hallett, M., LaFaver, K., LaFrance, W. C., Jr, Lang, A. E., Nicholson, T., Nielsen, G., Reuber, M., Voon, V., Stone, J., & Morgante, F. (2018). Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurology, 75(9), 1132–1141. https://doi.org/10.1001/jamaneurol.2018.1264

Ferreira dos Santos, L., Christ, O., Mate, K., Schmidt, H., Krüger, J., & Dohle, C. (2016). Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. Biomedical Engineering Online, 15(3), 144. https://doi.org/10.1186/s12938-016-0289-4

Flansbjer, U.-B., Lexell, J., & Brogårdh, C. (2012). Long-term benefits of progressive resistance training in chronic stroke: a 4-year follow-up. Journal of Rehabilitation Medicine: Official Journal of the UEMS European Board of Physical and Rehabilitation Medicine, 44(3), 218–221. https://doi.org/10.2340/16501977-0936

Frith, C. D., Blakemore, S., & Wolpert, D. M. (2000). Explaining the symptoms of schizophrenia: abnormalities in the awareness of action. Brain Research. Brain Research Reviews, 31(2-3), 357–363. https://doi.org/10.1016/s0165-0173(99)00052-1

Galea, J. M., Mallia, E., Rothwell, J., & Diedrichsen, J. (2015). The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 18(4), 597–602. https://doi.org/10.1038/nn.3956

Gazova, I., Vlcek, K., Laczó, J., Nedelska, Z., Hyncicova, E., Mokrisova, I., Sheardova, K., & Hort, J. (2012). Spatial navigation—a unique window into physiological and pathological aging. Frontiers in Aging Neuroscience, 4. https://doi.org/10.3389/fnagi.2012.00016

Gerbier, E., & Toppino, T. C. (2015). The effect of distributed practice: Neuroscience, cognition, and education. Trends in Neuroscience and Education, 4(3), 49–59. https://doi.org/10.1016/j.tine.2015.01.001

Glazier, P. S. (2017). Towards a Grand Unified Theory of sports performance. Human Movement Science, 56(Pt A), 139–156. https://doi.org/10.1016/j.humov.2015.08.001

Glazier, P. S., & Davids, K. (2009). Constraints on the complete optimization of human motion. Sports Medicine , 39(1), 15–28. https://doi.org/10.2165/00007256-200939010-00002

Gonzalez Castro, L. N., Monsen, C. B., & Smith, M. A. (2011). The binding of learning to action in motor adaptation. PLoS Computational Biology, 7(6), e1002052. https://doi.org/10.1371/journal.pcbi.1002052

Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. https://doi.org/10.3200/JMBR.36.2.212-224

Gudberg, C., & Johansen-Berg, H. (2015). Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke. Frontiers in Neurology, 6, 241. https://doi.org/10.3389/fneur.2015.00241

Harbourne, R. T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Physical Therapy, 89, 267–282.

Harris, J. E., & Eng, J. J. (2010). Strength training improves upper-limb function in individuals with stroke: a meta-analysis. Stroke; a Journal of Cerebral Circulation, 41(1), 136–140. https://doi.org/10.1161/STROKEAHA.109.567438

Hart, T., Tsaousides, T., Zanca, J. M., Whyte, J., Packel, A., Ferraro, M., & Dijkers, M. P. (2014). Toward a theory-driven classification of rehabilitation treatments. Archives of Physical Medicine and Rehabilitation, 95(1 Suppl), S33–S44.e2. https://doi.org/10.1016/j.apmr.2013.05.032

Hassett, L., van den Berg, M., Lindley, R. I., Crotty, M., McCluskey, A., van der Ploeg, H. P., Smith, S. T., Schurr, K., Howard, K., Hackett, M. L., & Others. (2020). Digitally enabled aged care and neurological rehabilitation to enhance outcomes with Activity and MObility UsiNg Technology (AMOUNT) in Australia: A randomised controlled trial. PLoS Medicine, 17(2), e1003029. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003029

Hassett, L., van den Berg, M., Lindley, R. I., Crotty, M., McCluskey, A., van der Ploeg, H. P., Smith, S. T., Schurr, K., Killington, M., Bongers, B., Howard, K., Heritier, S., Togher, L., Hackett, M., Treacy, D., Dorsch, S., Wong, S., Scrivener, K., Chagpar, S., … Sherrington, C. (2016). Effect of affordable technology on physical activity levels and mobility outcomes in rehabilitation: a protocol for the Activity and MObility UsiNg Technology (AMOUNT) rehabilitation trial. BMJ Open, 6(6), e012074. https://doi.org/10.1136/bmjopen-2016-012074

Hayward, K. S., Barker, R. N., Carson, R. G., & Brauer, S. G. (2014). The effect of altering a single component of a rehabilitation programme on the functional recovery of stroke patients: a systematic review and meta-analysis. Clinical Rehabilitation, 28(2), 107–117. https://doi.org/10.1177/0269215513497601

Heinzel, S., Maechtel, M., Hasmann, S. E., Hobert, M. A., Heger, T., Berg, D., & Maetzler, W. (2016). Motor dual-tasking deficits predict falls in Parkinson’s disease: A prospective study. Parkinsonism & Related Disorders, 26, 73–77. https://doi.org/10.1016/j.parkreldis.2016.03.007

Heremans, E., Nieuwboer, A., & Vercruysse, S. (2013). Freezing of gait in Parkinson’s disease: where are we now? Current Neurology and Neuroscience Reports, 13(6), 350. https://doi.org/10.1007/s11910-013-0350-7

Herold, F., Törpel, A., & Schega, L. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements–a systematic review. European Review of. https://eurapa.biomedcentral.com/articles/10.1186/s11556-019-0217-2

Hoffmann, T. C., Glasziou, P. P., Boutron, I., Milne, R., Perera, R., Moher, D., Altman, D. G., Barbour, V., Macdonald, H., Johnston, M., Lamb, S. E., Dixon-Woods, M., McCulloch, P., Wyatt, J. C., Chan, A.-W., & Michie, S. (2014). Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ , 348, g1687. https://doi.org/10.1136/bmj.g1687

Hsu, S.-S., Hu, M.-H., Wang, Y.-H., Yip, P.-K., Chiu, J.-W., & Hsieh, C.-L. (2010). Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke. Stroke; a Journal of Cerebral Circulation, 41(4), 821–824. https://doi.org/10.1161/STROKEAHA.109.574160

Ito, J. P. (2015). Repetition Without Repetition: How Bernstein Illumines Motor Skill in Music Performance. In M. Nadin (Ed.), Anticipation: Learning from the Past: The Russian/Soviet Contributions to the Science of Anticipation (pp. 257–268). Springer International Publishing. https://doi.org/10.1007/978-3-319-19446-2_14

Kal, E., Houdijk, H., van der Kamp, J., Verhoef, M., Prosée, R., Groet, E., Winters, M., van Bennekom, C., & Scherder, E. (2018). Are the effects of internal focus instructions different from external focus instructions given during balance training in stroke patients? A double-blind randomized controlled trial. Clinical Rehabilitation, 269215518795243. https://doi.org/10.1177/0269215518795243

Kamm, K., Thelen, E., & Jensen, J. L. (1990). A dynamical systems approach to motor development. Physical Therapy, 70(12), 763–775. https://doi.org/10.1093/ptj/70.12.763

Karnath, H.-O. (2007). Pusher syndrome–a frequent but little-known disturbance of body orientation perception. Journal of Neurology, 254(4), 415–424. http://www.springerlink.com/index/L023657571504W42.pdf

Kjølhede, T., Vissing, K., & Dalgas, U. (2012). Multiple sclerosis and progressive resistance training: a systematic review. Multiple Sclerosis , 18(9), 1215–1228. https://doi.org/10.1177/1352458512437418

Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research: JSLHR, 51, S225.

Kleynen, M., Braun, S. M., Rasquin, S. M. C., Bleijlevens, M. H. C., Lexis, M. A. S., Halfens, J., Wilson, M. R., Masters, R. S. W., & Beurskens, A. J. (2015). Multidisciplinary Views on Applying Explicit and Implicit Motor Learning in Practice: An International Survey. PloS One, 10(8), e0135522. https://doi.org/10.1371/journal.pone.0135522

Kleynen, M., Moser, A., Haarsma, F. A., Beurskens, A. J., & Braun, S. M. (2017). Physiotherapists use a great variety of motor learning options in neurological rehabilitation, from which they choose through an iterative process: a retrospective think-aloud study. Disability and Rehabilitation, 39(17), 1729–1737. https://www.tandfonline.com/doi/abs/10.1080/09638288.2016.1207111

Krakauer, J. W., & Cortés, J. C. (2018). A non-task-oriented approach based on high-dose playful movement exploration for rehabilitation of the upper limb early after stroke: A proposal. NeuroRehabilitation, 43(1), 31–40. https://doi.org/10.3233/NRE-172411

Krebs, H. I. (2018). Twenty+ years of robotics for upper-extremity rehabilitation following a stroke. In Rehabilitation Robotics (pp. 175–192). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128119952000138

Lang, C. E., Lohse, K. R., & Birkenmeier, R. L. (2015). Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Current Opinion in Neurology, 28(6), 549–555. https://doi.org/10.1097/WCO.0000000000000256

Lang, C. E., Strube, M. J., Bland, M. D., Waddell, K. J., Cherry-Allen, K. M., Nudo, R. J., Dromerick, A. W., & Birkenmeier, R. L. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Annals of Neurology, 80(3), 342–354. http://onlinelibrary.wiley.com/doi/10.1002/ana.24734/full

Latash, M. L. (2018). Abundant Degrees of Freedom Are Not a Problem. Kinesiology Review, 7(1), 64–72. https://doi.org/10.1123/kr.2017-0058
Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology. Learning, Memory, and Cognition. https://psycnet.apa.org/journals/xlm/9/4/730/

Lennon, S., Ramdharry, G., & Verheyden, G. (2018). Physical Management for Neurological Conditions E-Book. Elsevier Health Sciences. https://play.google.com/store/books/details?id=7bpmDwAAQBAJ

Lewthwaite, R., Chiviacowsky, S., Drews, R., & Wulf, G. (2015). Choose to move: The motivational impact of autonomy support on motor learning. Psychonomic Bulletin & Review, 22(5), 1383–1388. https://doi.org/10.3758/s13423-015-0814-7

Lohse Keith R., Lang Catherine E., & Boyd Lara A. (2014). Is More Better? Using Metadata to Explore Dose–Response Relationships in Stroke Rehabilitation. Stroke; a Journal of Cerebral Circulation, 45(7), 2053–2058. https://doi.org/10.1161/STROKEAHA.114.004695

Lohse, K. R., Jones, M., Healy, A. F., & Sherwood, D. E. (2014). The role of attention in motor control. Journal of Experimental Psychology. General, 143(2), 930–948. https://doi.org/10.1037/a0032817

Low, M. (2018). A Time to Reflect on Motor Control in Musculoskeletal Physical Therapy. The Journal of Orthopaedic and Sports Physical Therapy, 48(11), 833–836. https://doi.org/10.2519/jospt.2018.0614

Lunven, M., & Bartolomeo, P. (2017). Attention and spatial cognition: Neural and anatomical substrates of visual neglect. Annals of Physical and Rehabilitation Medicine, 60(3), 124–129. https://doi.org/10.1016/j.rehab.2016.01.004

Maier, M., Ballester, B. R., & Verschure, P. F. (2019). Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Frontiers in Systems Neuroscience, 13, 74. https://www.researchgate.net/profile/Martina_Maier/publication/337975575_Principles_of_Neurorehabilitation_After_Stroke_Based_on_Motor_Learning_and_Brain_Plasticity_Mechanisms/links/5df8dfda92851c836483d590/Principles-of-Neurorehabilitation-After-Stroke-Based-on-Motor-Learning-and-Brain-Plasticity-Mechanisms.pdf

Mang, C. S., Campbell, K. L., Ross, C. J. D., & Boyd, L. A. (2013). Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Physical Therapy, 93(12), 1707–1716. https://doi.org/10.2522/ptj.20130053

Mang, C. S., Snow, N. J., Campbell, K. L., Ross, C. J. D., & Boyd, L. A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology, 117(11), 1325–1336. https://doi.org/10.1152/japplphysiol.00498.2014

McCambridge, A., Meiring, R. M., & Bradnam, L. V. (2019). Physical Activity, Sedentary Behavior, and Barriers to Exercise in People Living With Dystonia. Frontiers in Neurology, 10, 1121. https://doi.org/10.3389/fneur.2019.01121

McEwen, S., Polatajko, H., Baum, C., & Rios, J. (2014). Combined Cognitive-Strategy and Task-Specific Training Improve Transfer to Untrained Activities in Subacute Stroke An Exploratory Randomized Controlled Trial. Neurorehabilitation and Neural Repair. http://nnr.sagepub.com.ezproxy.flinders.edu.au/content/early/2014/11/14/1545968314558602.abstract

McKenna, S., Martin, S., Jones, F., Gracey, J., & Lennon, S. (2015). The Bridges Stroke Self-Management program for Stroke Survivors in the Community: Stroke, Carer and HealthProfessional Participants’ Perspectives. Physical Medicine and Rehabilitation-International, 2(1), 1030–1036. http://uir.ulster.ac.uk/31688/

McLoughlin, J. V., Lord, S. R., Barr, C. J., Crotty, M., & Sturnieks, D. L. (2014). Dorsiflexion Assist Orthosis Reduces the Physiological Cost and Mitigates Deterioration in Strength and Balance Associated With Walking in People With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation. http://www.sciencedirect.com/science/article/pii/S0003999314010703

Mehta, S., Pereira, S., Viana, R., Mays, R., McIntyre, A., Janzen, S., & Teasell, R. W. (2012). Resistance training for gait speed and total distance walked during the chronic stage of stroke: a meta-analysis. Topics in Stroke Rehabilitation, 19(6), 471–478. https://doi.org/10.1310/tsr1906-471

Merbah, S., & Meulemans, T. (2011). Learning a motor skill: Effects of blocked versus random practice: A review. Psychologica Belgica. https://psycnet.apa.org/record/2011-03796-003

Meyns, P., Kerkum, Y. L., Brehm, M. A., Becher, J. G., Buizer, A. I., & Harlaar, J. (2020). Ankle foot orthoses in cerebral palsy: Effects of ankle stiffness on trunk kinematics, gait stability and energy cost of walking. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paediatric Neurology Society. https://doi.org/10.1016/j.ejpn.2020.02.009

Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Science: IS, 6, 42. https://doi.org/10.1186/1748-5908-6-42

Migliaccio, A. A., & Schubert, M. C. (2019). Advanced Vestibular Rehabilitation. In A. Shaikh & F. Ghasia (Eds.), Advances in Translational Neuroscience of Eye Movement Disorders (pp. 167–189). Springer International Publishing. https://doi.org/10.1007/978-3-030-31407-1_9

Mittelstaedt, H. (1996). Somatic graviception. Biological Psychology, 42(1-2), 53–74. http://www.ncbi.nlm.nih.gov/pubmed/8770370

Moore Jennifer L., Roth Elliot J., Killian Clyde, & Hornby T. George. (2010). Locomotor Training Improves Daily Stepping Activity and Gait Efficiency in Individuals Poststroke Who Have Reached a “Plateau” in Recovery. Stroke; a Journal of Cerebral Circulation, 41(1), 129–135. https://doi.org/10.1161/STROKEAHA.109.563247

Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Frontiers in Psychology, 10, 2790. https://doi.org/10.3389/fpsyg.2019.02790

Morris, S. L., Dodd, K. J., & Morris, M. E. (2004). Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical Rehabilitation, 18(1), 27–39. https://doi.org/10.1191/0269215504cr699oa

Normann, B., PT, PhD. (2018). Facilitation of movement: New perspectives provide expanded insights to guide clinical practice. Physiotherapy Theory and Practice, 1–10. https://doi.org/10.1080/09593985.2018.1493165

Ogoh, S., Marais, M., Lericollais, R., Denise, P., Raven, P. B., & Normand, H. (2018). Interaction between graviception and carotid baroreflex function in humans during parabolic flight-induced microgravity. Journal of Applied Physiology, 125(2), 634–641. https://doi.org/10.1152/japplphysiol.00198.2018

O’Shea, H., & Moran, A. (2017). Does Motor Simulation Theory Explain the Cognitive Mechanisms Underlying Motor Imagery? A Critical Review. Frontiers in Human Neuroscience, 11, 72. https://doi.org/10.3389/fnhum.2017.00072

Pareés, I., Brown, H., Nuruki, A., Adams, R. A., Davare, M., Bhatia, K. P., Friston, K., & Edwards, M. J. (2014). Loss of sensory attenuation in patients with functional (psychogenic) movement disorders. Brain: A Journal of Neurology, 137(Pt 11), 2916–2921. https://doi.org/10.1093/brain/awu237

Pazzaglia, M., & Galli, G. (2019). Action Observation for Neurorehabilitation in Apraxia. Frontiers in Neurology, 10, 309. https://doi.org/10.3389/fneur.2019.00309

Pekny, S. E., Izawa, J., & Shadmehr, R. (2015). Reward-dependent modulation of movement variability. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(9), 4015–4024. https://doi.org/10.1523/JNEUROSCI.3244-14.2015

Possin, K. L. (2010). Visual spatial cognition in neurodegenerative disease. Neurocase, 16(6), 466–487. https://doi.org/10.1080/13554791003730600
Rimmer, J., & Lai, B. (2015). Framing new pathways in transformative exercise for individuals with existing and newly acquired disability. Disability and Rehabilitation, 1–8. https://doi.org/10.3109/09638288.2015.1047967

Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., … Shaw, L. (2019). Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. The Lancet, 394(10192), 51–62. https://doi.org/10.1016/S0140-6736(19)31055-4

Roemmich, R. T., & Bastian, A. J. (2018). Closing the Loop: From Motor Neuroscience to Neurorehabilitation. Annual Review of Neuroscience, 41, 415–429. https://doi.org/10.1146/annurev-neuro-080317-062245

Ross, S. M., MacDonald, M., & Bigouette, J. P. (2016). Effects of strength training on mobility in adults with cerebral palsy: A systematic review. Disability and Health Journal, 9(3), 375–384. https://doi.org/10.1016/j.dhjo.2016.04.005

Sadnicka, A., Kornysheva, K., Rothwell, J. C., & Edwards, M. J. (2017). A unifying motor control framework for task-specific dystonia. Nature Reviews. Neurology. https://doi.org/10.1038/nrneurol.2017.146

Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychological Bulletin, 95(3), 355–386. https://www.ncbi.nlm.nih.gov/pubmed/6399752

Samad, M., Chung, A. J., & Shams, L. (2015). Perception of body ownership is driven by Bayesian sensory inference. PloS One, 10(2), e0117178. https://doi.org/10.1371/journal.pone.0117178

Sato, A., & Yasuda, A. (2005). Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition, 94(3), 241–255. https://doi.org/10.1016/j.cognition.2004.04.003

Schenkman, M., Moore, C. G., Kohrt, W. M., Hall, D. A., Delitto, A., Comella, C. L., Josbeno, D. A., Christiansen, C. L., Berman, B. D., Kluger, B. M., Melanson, E. L., Jain, S., Robichaud, J. A., Poon, C., & Corcos, D. M. (2017). Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurology. https://doi.org/10.1001/jamaneurol.2017.3517

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review. https://psycnet.apa.org/record/1975-26710-001
Schultz, W. (2015). Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews, 95(3), 853–951. https://doi.org/10.1152/physrev.00023.2014

Schwenk, M., Dutzi, I., Englert, S., Micol, W., Najafi, B., Mohler, J., & Hauer, K. (2014). An intensive exercise program improves motor performances in patients with dementia: translational model of geriatric rehabilitation. Journal of Alzheimer’s Disease: JAD, 39(3), 487–498. https://doi.org/10.3233/JAD-130470

Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology. Human Learning and Memory, 5(2), 179. http://psycnet.apa.org/journals/xlm/5/2/179/

Shulman, L. M., Velozo, C., Romero, S., & Gruber-Baldini, A. L. (2019). Comparative study of PROMISⓇ self-efficacy for managing chronic conditions across chronic neurologic disorders. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 28(7), 1893–1901. https://doi.org/10.1007/s11136-019-02164-2

Siengsukon, C. F., & Boyd, L. A. (2009). Does sleep promote motor learning? Implications for physical rehabilitation. Physical Therapy, 89(4), 370–383. https://doi.org/10.2522/ptj.20080310

Silva, S., Borges, L. R., Santiago, L., Lucena, L., Lindquist, A. R., & Ribeiro, T. (2018). Motor imagery for gait rehabilitation after stroke. Cochrane Database of Systematic Reviews , 2018(5). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494598/

Snodgrass, S. J., Heneghan, N. R., Tsao, H., Stanwell, P. T., Rivett, D. A., & Van Vliet, P. M. (2014). Recognising neuroplasticity in musculoskeletal rehabilitation: a basis for greater collaboration between musculoskeletal and neurological physiotherapists. Manual Therapy, 19(6), 614–617. https://doi.org/10.1016/j.math.2014.01.006

Song, J.-H. (2019). The role of attention in motor control and learning. Current Opinion in Psychology, 29, 261–265. https://doi.org/10.1016/j.copsyc.2019.08.002

Srinivasan, S. M., & Bhat, A. N. (2013). A review of “music and movement” therapies for children with autism: embodied interventions for multisystem development. Frontiers in Integrative Neuroscience, 7. https://doi.org/10.3389/fnint.2013.00022

Statton, M. A., Toliver, A., & Bastian, A. J. (2016). A dual-learning paradigm can simultaneously train multiple characteristics of walking. Journal of Neurophysiology, 115(5), 2692–2700. https://doi.org/10.1152/jn.00090.2016

Stoller, O., de Bruin, E. D., Knols, R. H., & Hunt, K. J. (2012). Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurology, 12, 45. https://doi.org/10.1186/1471-2377-12-45

Stoykov, M. E., & Madhavan, S. (2015). Motor priming in neurorehabilitation. Journal of Neurologic Physical Therapy: JNPT, 39(1), 33–42. https://doi.org/10.1097/NPT.0000000000000065

Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., Bryson, C., Delgado, A., & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke; a Journal of Cerebral Circulation, 44(5), 1383–1388. https://doi.org/10.1161/STROKEAHA.111.000559

Tejima, N. (2001). Rehabilitation robotics: a review. Advanced Robotics: The International Journal of the Robotics Society of Japan, 14(7), 551–564. https://doi.org/10.1163/156855301742003

Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., & Behrens, J. (2019). Mirror Therapy for Improving Motor Function After Stroke: Update of a Cochrane Review. Stroke; a Journal of Cerebral Circulation. https://www-ahajournals-org.ezproxy.flinders.edu.au/doi/abs/10.1161/STROKEAHA.118.023092

Treleaven, J., Jull, G., & LowChoy, N. (2006). The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash. Manual Therapy, 11(2), 99–106. https://doi.org/10.1016/j.math.2005.04.003

Tyson, S. F., Sadeghi-Demneh, E., & Nester, C. J. (2013). A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clinical Rehabilitation, 27(10), 879–891. https://doi.org/10.1177/0269215513486497

Vaegter, H. B., Madsen, A. B., Handberg, G., & Graven-Nielsen, T. (2018). Kinesiophobia is associated with pain intensity but not pain sensitivity before and after exercise: an explorative analysis. Physiotherapy, 104(2), 187–193. https://doi.org/10.1016/j.physio.2017.10.001

van den Berg, M., Sherrington, C., Killington, M., Smith, S., Bongers, B., Hassett, L., & Crotty, M. (2016). Video and computer-based interactive exercises are safe and improve task-specific balance in geriatric and neurological rehabilitation: a randomised trial. Journal of Physiotherapy, 62(1), 20–28. https://doi.org/10.1016/j.jphys.2015.11.005

Vaughan-Graham, J., Patterson, K., Zabjek, K., & Cott, C. A. (2019). Important Movement Concepts: Clinical Versus Neuroscience Perspectives. Motor Control, 23(3), 273–293. https://doi.org/10.1123/mc.2017-0085

Vaz, D. V., Pinto, V. A., Junior, R. R. S., Mattos, D. J. S., & Mitra, S. (2019). Coordination in adults with neurological impairment – A systematic review of uncontrolled manifold studies. Gait & Posture, 69, 66–78. https://doi.org/10.1016/j.gaitpost.2019.01.003

veloso Fernandes, M., Maifrino, L. B. M., Monte, K. N. S., Araújo, R. C., Mochizuki, L., & Ervilha, U. F. (2017). Effectiveness of resistance training exercises in spastic diplegia cerebral palsy: a review. Journal of Morphological Sciences, 29(3), 0–0. http://www.jms.periodikos.com.br/journal/jms/article/587cb4b37f8c9d0d058b4806

Vossen, C. J., Luijcks, R., van Os, J., Joosten, E. A., & Lousberg, R. (2018). Does pain hypervigilance further impact the lack of habituation to pain in individuals with chronic pain? A cross-sectional pain ERP study. Journal of Pain Research, 11, 395–405. https://doi.org/10.2147/JPR.S146916

Walton, C. C., Mowszowski, L., Gilat, M., Hall, J. M., O’Callaghan, C., Muller, A. J., Georgiades, M., Szeto, J. Y. Y., Martens, K. A. E., Shine, J. M., & Others. (2018). Cognitive training for freezing of gait in Parkinson’s disease: a randomized controlled trial. Npj Parkinson’s Disease, 4(1), 15. https://www.nature.com/articles/s41531-018-0052-6

Winstein, C. (2018). Thoughts About the Negative Results of Clinical Trials in Rehabilitation Medicine. Kinesiology Review, 7(1), 58–63. https://doi.org/10.1123/kr.2017-0063

Winstein, C., & Varghese, R. (2018). Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation. https://doi.org/10.3233/NRE-172412

World Health Organization (2001). International classification of functioning, disability and health: ICF. https://apps.who.int/iris/bitstream/handle/10665/42407/9241545429.pdf

Wolpe, N., Zhang, J., Nombela, C., Ingram, J. N., Wolpert, D. M., Cam-CAN, & Rowe, J. B. (2017). Sensory attenuation is related to dopamine dose in Parkinson’s disease. In bioRxiv (p. 221317). https://doi.org/10.1101/221317

Wolpert, D. M. (2014). Computations in Sensorimotor Learning. Cold Spring Harbor Symposia on Quantitative Biology, 79, 93–98. https://doi.org/10.1101/sqb.2014.79.024919

Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews. Neuroscience.
Wulf, G. (2013). Attentional focus and motor learning: a review of 15 years. International Review of Sport and Exercise Psychology, 6(1), 77–104. https://doi.org/10.1080/1750984X.2012.723728

Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin & Review, 23(5), 1382–1414. https://doi.org/10.3758/s13423-015-0999-9

Wu, W. F. W., & Magill, R. A. (2011). Allowing learners to choose: self-controlled practice schedules for learning multiple movement patterns. Research Quarterly for Exercise and Sport, 82(3), 449–457. https://doi.org/10.1080/02701367.2011.10599777

Zhang, S., Liu, D., Ye, D., Li, H., & Chen, F. (2017). Can music-based movement therapy improve motor dysfunction in patients with Parkinson’s disease? Systematic review and meta-analysis. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(9), 1629–1636. https://doi.org/10.1007/s10072-017-3020-8

Zigmond, M. J., & Smeyne, R. J. (2014). Exercise: is it a neuroprotective and if so, how does it work? Parkinsonism & Related Disorders, 20 Suppl 1, S123–S127. https://doi.org/10.1016/S1353-8020(13)70030-0

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.